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ABSTRACT   

The International X-ray Observatory (IXO) is a collaborative effort between NASA, ESA, and JAXA.  The IXO science 
goals are heavily based on obtaining high quality X-ray spectra.  In order to achieve this goal the science payload will 
incorporate an array of gratings for high resolution, high throughput spectroscopy at the lowest X-ray energies, 0.3 – 1.0 
keV.  The spectrometer will address a number of important astrophysical goals such as studying the dynamics of clusters 
of galaxies, determining how elements are created in the explosions of massive stars, and revealing most of the “normal” 
matter in the universe which is currently thought to be hidden in hot filaments of gas stretching between galaxies. We 
present here a mature design concept for an Off-Plane X-ray Grating Spectrometer (OP-XGS).  This XGS concept has 
seen recent significant advancements in optical and mechanical design.  We present here an analysis of how the baseline 
OP-XGS design fulfills the IXO science requirements for the XGS and the optical and mechanical details of this design. 
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1. INTRODUCTION  

The purpose of the OP-XGS is to provide high spectral resolution, λ/Δλ > 3000, and high effective area, > 1000 cm2 at 
low energies, 0.3-1.0 keV.  The spectrometer consists of an array of reflection gratings in the off-plane mount that 
diffracts light onto an array of dedicated CCDs1, 2, 3, 4.  Light intersects the surface of the grating at grazing incidence, 
~2.5°, and nearly parallel to the groove direction.  This maximizes the illumination efficiency on the gratings.  
Furthermore, the groove profile can be blazed to preferentially diffract light to only one side of zero order thus increasing 
the efficiency further.  The off-plane geometry leads to diffraction along an arc at the focal plane.  A summary of the 
generic off-plane geometry is shown in Figure 15. 

The viewing orientation for the diagram on the right is normal to the focal plane.  Therefore, we are looking 
approximately down the optical axis.  In this orientation the gratings are extending from the focal plane toward the 
observer.  In reality, the gratings will not extend from their position in the spacecraft all the way to the focal plane, but 
this situation is shown here for illustrative purposes.  The arrows emanating from the grating surface show two possible 
paths for a ray of light intersected by a grating.  If the light was allowed to continue unimpeded by gratings, then it 
would propagate to the telescope focus which happens to lie in the grating focal plane along the circle defined by the arc  
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